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Abstract
Go is a programming language developed at Google, with channel-
based concurrent features based on CSP. Go can detect global com-
munication deadlocks at runtime when all threads of execution are
blocked, but deadlocks in other paths of execution could be unde-
tected. We present a new static analyser for concurrent Go code to
find potential communication errors such as communication mis-
match and deadlocks at compile time. Our tool extracts the com-
munication operations as session types, which are then converted
into Communicating Finite State Machines (CFSMs). Finally, we
apply a recent theoretical result on choreography synthesis to gen-
erate a global graph representing the overall communication pattern
of a concurrent program. If the synthesis is successful, then the pro-
gram is free from communication errors.

We have implemented the technique in a tool, and applied it
to analyse common Go concurrency patterns and an open source
application with over 700 lines of code.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.4 [Software Engineering]:
Software/Program Verification

Keywords Concurrent Go, Session types, Synthesis, Deadlock
freedom, Type safety, Communication safety, Static Analysis.

1. Introduction
Concurrent programming is made difficult by the subtleties re-
quired for correct access to shared memory. The research com-
munity has dedicated years of efforts to understand concurrent
behaviours with channel-based process calculi such as Hoare’s
CSP [11, 12], Milner’s CCS [26] and π-calculus [27]. However,
most mainstream programming languages do not adopt these
channel-based models but instead support concurrency through
thread programming or external libraries such as OpenMP [5], or
abstractions with complex semantics [2].

The Go programming language [32] from Google takes a dif-
ferent approach and supports concurrency as a fundamental part of
the language, with a channel-based concurrency model inspired by
CSP. As a result of the design, Go offers a high-level, composi-
tional way of constructing concurrent applications. In Go, values
are shared by communicating over channels between lightweight
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threads called goroutines. With this principle, the Go concurrency
makes it easy to construct streaming data pipelines that make effi-
cient use of multiple CPUs. The recently introduced core.async
in the Clojure language also adopts a similar model for concurrent
programming.

In this work we analyse concurrency in Go programs lever-
aging session types [13, 14, 35], which is a formal typing disci-
pline for communication that has its roots in the π-calculus. Ses-
sion types consist of type structures for communications, such as
a series of sending, receiving, choices and recursions, promot-
ing structured communications programming. Further, the theory
of multiparty session types [14] guarantees of deadlock-freedom
and communication safety between multiple participants, offering
a choreographic view of communications in concurrent programs.
We demonstrate how recent advanced techniques from the multi-
party session type theory (synthesis of global (session) graphs in
[23]) can be applied to detect and preempt concurrency problems
present in Go applications.
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Figure 1. Overall workflow of the tool chain.

Contributions This paper proposes the first static deadlock de-
tection tool, dingo-hunter based on session types, for the Go lan-
guage. The main techniques we use are inferring communicating
finite state machines (CFSMs) [3] by extracting communications in
a given Go program; and synthesising global session graphs which
represent the overall structure of communications from CFSMs.

Figure 1 outlines the workflow of our tool chain.

§ 2 gives an overview of concurrency in the Go language and the
limitations of the existing Go deadlock detector.

§ 3 shows an automatic inference of local session types from the
Go language. This is divided into two steps. First we translate
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a Go program to the Single Static Assignment (SSA) interme-
diate representation [10]. Then we translate it into a set of local
session types.

§ 4 first shows how to convert local session types into two kinds of
CFSMs, Channel CFSMs (which model channels between par-
ticipants) and Goroutine CFSMs (which model communication
behaviour of goroutines). Then it explains how to synthesise
global session graphs from these CFSMs.

§ 5 examines case studies of common Go concurrency patterns to
show how they can be analysed by our tool; and

§ 6 evaluates the tool on existing programs to demonstrate the
robustness of our approach.

The source code for the analysis tool and supplementary mate-
rials are available from [1]. The synthesis tool of [23] used in the
work is available from [18].

2. The Go Programming Language
Go [32] is a statically typed, compiled systems programming lan-
guage in the tradition of C and C++. One of the more well-known
features of Go is the built-in support for channel-based concur-
rency, where channels are first-class objects and integrated in the
core language design.

In the following example, Go program calculates the sum of two
numbers.
1 package main
2 import "fmt"
3

4 func add(x, y int) int { return x + y }
5

6 func main() {
7 sum := add(1, 2)
8 fmt.Printf("Result: %d\n", sum)
9 }

Listing 1. Example Go program.

The entry point of the executable code is the main function in
line 6. In the body of the main function, the add function is called,
which was defined in line 4. Notice that in line 7, the type of the
sum variable is automatically inferred and the line is equivalent to
var sum int = add(1, 2).

2.1 Concurrency in Go
Go supports concurrency through a feature called goroutines. Gor-
outines are lightweight functions which execute concurrently with
other goroutines in the same address space1 and communicate
through typed channels.

A function is executed as a goroutine if the function call is
prepended by the keyword go, and it does not block the caller.
Channels in Go are typed FIFO queues which can be shared be-
tween goroutines. They are synchronous by default, meaning that
they block on both send and receive commands. Consider the fol-
lowing code which is modified from Listing 1 to be executed con-
currently using goroutines and channels.
4 func add(x, y int, resultCh chan int) {
5 resultCh <- x + y
6 }
7

8 func main() {
9 result := make(chan int)

10 go add(1, 2, result ) // Call goroutine, non blocking
11 fmt.Printf("Result: %d\n", <-result ) // Receive
12 }

Listing 2. Example Go program with goroutines and channels.

1 From the Go language specification

Listing 2 shows a modified Listing 1 to use goroutines. Since the
add function is executed as a goroutine and the return value will
be inaccessible, we instead pass an integer channel (i.e. variable of
type chan int) as a parameter when calling add. The result of the
calculation can be then sent to the channel using the channel send
operator <- on line 5.

The integer channel is created in the main function (i.e. go
add callee) using the built-in make allocation function on line 9.
After main starts the goroutine on line 10, main blocks and waits
to receive using the receive operator <- on the channel result. The
difference between the send and receive operators is the position of
the channel variable (the arrow points into the channel for send and
out of the channel for receive).

Goroutines and channels are the primary means of concurrency
in Go (with the exception of the low-level synchronisation, sync,
package in the standard library).

2.2 Deadlock Detection in Go
Communication deadlocks are potential pitfalls of concurrency in
Go. The Go runtime comes with a runtime deadlock detector. The
tool detects a deadlock if all of the running (non-idle and unlocked)
goroutines are blocked waiting.

The deadlock detector is sound (i.e. does not give false posi-
tives), but the tool has certain limitations:

• Only global deadlocks are detected, which means that if not
all goroutines are involved in the deadlock, the tool will not
detect it is a deadlock. For example in Listing 3, Work is a
long running goroutine that performs calculations unrelated to
communication, keeping the number of active goroutines non-
zero. This hides the fact that one of the Recv goroutines are
blocked waiting forever since there is no sender.

• Since the runtime detector only detects deadlocks which mani-
fest themselves at runtime, deadlocks in long running processes
may go undetected until a specific execution path is triggered.

Listing 3 shows a Go program with a communication deadlock
which the Go deadlock detector cannot detect. There are four gor-
outines in the program: Send sends a message, Recv receives a
message and signals completion, and an extra Recv which intro-
duces a communication mismatch on channel ch. Work is a non-
ending goroutine which performs computation unrelated to other
goroutines.

1 func Send(ch chan<- int) { ch <- 42 }
2 func Recv(ch <-chan int, done chan<- int) {
3 val := <-ch
4 done <- val
5 }
6

7 func Work() {
8 for {
9 fmt.Println("Working..")

10 time.Sleep(1 * time.Second)
11 }
12 }
13

14 func main() { // main
15 ch, done := make(chan int), make(chan int)
16

17 go Send(ch) // Send_280
18 go Recv(ch, done) // Recv_293
19 go Recv(ch, done) // Recv_312
20 go Work() // Work_331
21

22 <-done // First receive
23 <-done // Second receive
24 }

Listing 3. A Go program with an undetected deadlock.
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The runtime detector works by counting the number of running
goroutines during execution, and detects a deadlock if the number
is 0. In the example, Work is always running, and despite that
one of the Recv blocks forever, it does not deadlock in the global
level, hence the running goroutines count is at least one and no
deadlocks are detected. In our approach, we perform static analysis
on the source code. Our deadlock detection is syntactic and does
not depend on runtime properties of the program. We can identify
a communication mismatch as we analyse the code, and find one
send for ch and two receives.

3. Inferring Local Session Types from Go code
This section describes how our static tool analyses Go source code
to derive a set of local session types by abstracting concurrent
interaction patterns amongst the goroutines.

3.1 Local Session Types
We begin by extracting the communication operations in the source
code as a local (session) type – a control-flow graph with session
primitives. A program is a closed communicating system which we
call a session. Each local type represents a single participant of the
session, hence corresponds to a single instance of a goroutine. In
a Go program, main is an implicit goroutine, and every instance
of a goroutine spawned by go functionName() is a separate
participant even for the same function.

The local session type, or simply local type, is a control-flow
graph where each node is one of following: (1) Channel ch T
(create a new channel with name ch of type T), (2) Send ch (send
to a channel ch), (3) Recv ch (receive from a channel ch), (4)
Close ch (close or terminate a channel ch), and (5) Label (a named
jump label). (2)–(4) are communication operations, and (2) and (3)
correspond to send and receive type from [14], written ch!〈T 〉 ;T ′

and ch?〈T 〉 ;T ′ respectively where T ′ is the continuation (child
node), and (4) correspond to the closing channel operation in [9].

main

Channel
main.main.t0@0
Type:int (ch)

Channel
main.main.t1@0
Type:int (done)

Recv
main.main.t1@0

Recv
main.main.t1@0

Recv_293

Recv
main.main.t0@0

Send
main.main.t1@0

Recv_312

Recv
main.main.t0@0

Send
main.main.t1@0

Send_280

Send
main.main.t0@0

Work_331

Label
main.Work#1

Figure 2. Local types of Listing 3.

Figure 2 lists the set of local types extracted from the source
code of Listing 3. The figure lists five subgraphs, where each of
them represents one local type for one goroutine.

The names Send_280, Recv_293, Recv_312 and main are
identifiers to the instances of goroutines, and are the initial nodes
of the local graphs. The channels ch and done, created in the
main function, are represented in the main graph as unique names
main.main.t0@0 and main.main.t1@0 respectively (line 14),
followed by two receives (lines 21 and 22). The unique names are
used for referencing the channel in Send, Recv and Close nodes.

The next three local types correspond to go Send, the first go
Recv and the second go Recv in lines 16–18. Send_280 calls the
function on line 1 so that it has Send node to main.main.t0@0
(ch). Similarly both Recv_293 and Recv_312 are followed by
two nodes, Recv main.main.t1 and Send main.main.t0, which
correspond to the function in line 2–5.

In the local type for Work (i.e. Work_331), there are no commu-
nication operations and hence describes only the control-flow of
the Work function, which includes a loop. The resulting local type
contains communication primitives that interact between partici-
pants through channels. A channel is a dynamic medium between
a sender and a receiver, connecting the participants.

3.2 Extraction with SSA IR
We implement our analysis using the Single Static Assignment
(SSA) intermediate representation of the Go program, constructed
by the go/ssa package in the standard library. The SSA represen-
tation simplifies the syntax of a Go program into a limited set of
instructions, and flattens the control flow of the program as jumps
between blocks of instructions for analysis.

We explain below how a local type can be inferred from Go
code. The analysis starts from the program’s main entry point, the
main function, and interprets the SSA instructions following the
program control-flow. Instructions related to communications are
converted to nodes of the local type graph, and instructions related
to control-flow are converted to edges of the local type graph. At
the end of the analysis, a set of local type graphs is generated to
represent the set of goroutines in the program. We first look at
communication related instructions.

Communication Instructions (Table 1) These are the most im-
portant instructions in our analysis, because they define the com-
munication behaviour of the goroutines. When encountering the
following instructions, new local type nodes are created.

MakeChan{Size} is an instruction to initialise a new shared
channel for communications. A typed channel (i.e. chan T) is
a reference type and can only be initialised by a make(chan
T) in the source code. Since channels are first class objects

in Go, the initialisation is captured by this special instruction.
Once created, channels do not change (except for close). In this
work we only consider unbuffered (i.e. Size = 0), hence syn-
chronous, channels. In the local type, we assign each channel
created with MakeChan with a unique name in the form of pack-
age.function.register@version. The part before @ is a notation for
fully qualified variable name, and the part after is a counter for
distinguishing between channels created by multiple calls to the
function. This unique name is used as a reference for other commu-
nication instructions since channels are shared between goroutines.

Send{Chan=ch, X} is an instruction representing sending of a
value (X) to a channel (Chan) variable. It corresponds to a send
node in the local type (Send ch).

UnOp{Op=ARROW, X=ch} is an instruction that corresponds
to receive. The receive operator (<-ch) is implemented in Go as a
unary expression on the channel (X), and as a result, the received
values are not required to be stored. It corresponds to a receive node
in the local type (Receive ch).

Select{States, Blocking} represents a choice based on the com-
munication on channels. Each of the cases in the select is guarded
by a communication operation (either send or receive), and the case
is chosen if the operation does not block. States is a list contain-
ing details of the guard: the channel, the type of operation (send or
receive) and the value to send (if it is a send operation). The other
argument, Blocking, is a boolean which indicates if a default case
exists. If a default case exists, then when all of the communication
cases are blocking, the default case is chosen (i.e. Blocking = false).
In our conversion to local types, the local types of each case in the
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Table 1. Communication related instructions for local type nodes.
SSA instruction Local type nodes Example Go code

MakeChan{Size} Create and initialise a channel with Size buffer Channel ch Type ch := make(chan Type)
Send{Chan, X} Send a value (X) to a channel Chan Send ch ch <- val

UnOp{Op=ARROW, X} Unary <-, i.e. Receive from a channel X Recv ch var := <-ch
Select{States} Non-deterministic choice on channel Parent Node

Recv ch1 Q1

Send ch2 Q2

EmptyLabel Q3

select {
case <-ch1: Q1

case ch2 <- val: Q2

default: Q3

}

Builtin{Name=close} Builtin function to close a channel Close ch close(ch)

select is appended as a child of the parent local graph node of Se-
lect and the default case is translated to an empty label to denote
no communication operations.

Builtin{Name=close, Arg=[ch]} represents the use of a built-in
functions defined by the language. Other notable builtin functions
are len() (length or size of array/slice/struct). The close built-in
function takes a channel as an argument and closes the channel.
Once a channel is closed, it cannot be used by any goroutines
anymore. The local type of close is a close node: Close ch.

Control-flow Instructions (Table 2) These instructions define the
control flow of a Go program. As a Go program is translated into
SSA IR, the function bodies are segmented into blocks of related
instructions, for example, Listing 5 shows a for-loop split into four
blocks, one for loop entry and initialisation (Block 0), one for loop
body (Block 1), one for exit block with continuation after for-loop
(Block 2) and one for calculating and checking loop conditions
(Block 3). The right hand column are the types of the registers
(e.g. t0 is an int). These blocks are connected by conditional and
unconditional jumps at the end of each block. The jumps between
blocks follows the flow of control of the program.
1 sum := 0
2 for i := 0; i < 10; i++ {
3 sum += i
4 }
5 fmt.Println(sum)

Listing 4. For-loop in Go.

0: entry P:0 S:1
jump 3

1: for.body P:1 S:1
t0 = t7 + t8 int
t1 = t8 + 1:int int
jump 3

2: for.done P:1 S:0
t2 = new [1] interface {} (varargs) *[1] interface {}
t3 = &t2[0: int] *interface {}
t4 = make interface {} <- int (t7) interface {}
*t3 = t4
t5 = s l i c e t2[:] [] interface {}
t6 = fmt.Println(t5...) (n int , err error)
r e t u r n

3: for.loop P:2 S:2
t7 = p h i [0: 0:int , 1: t0] #sum int
t8 = p h i [0: 0:int , 1: t1] #i int
t9 = t8 < 10: int bool
i f t9 g o t o 1 e l s e 2

Listing 5. For-loop from Listing 4 in SSA IR form.

Call{Func, Method, Args} is an instruction to call functions.
The function (Func) may be either an ordinary function, a closure
or a Builtin function such as close. The control flow of the program
follows the function and returns to the caller when the end of

the function body is reached. In the local types graph, an edge is
added from the caller to the subgraph representing the local types
of the callee body. During function calls, parameters of the callee
are translated from arguments from the caller (Args), so variables
used in the body of the function are aliases of the variables in the
caller. This is particularly important to retrieve unique references
to channels created by MakeChan instructions in callers.

Go{Func, Method, Args} is an instruction to spawn a goroutine.
The instruction is similar to Call, but the function called will be
started as a separate goroutine from the caller, thus there is no
edge connecting the caller and the callee. A new local type graph
is added to the session, and its initial node points to the subgraph
representing the local types of the callee body.

Jump is an unconditional jump from the current block to a
successor block. The Jump instruction only appears at the end of
a block, and is a sequential transition from the current block to the
next block in the same scope (e.g. within a function body). In the
local types graph, this is a simply an edge from the local types of
the current block to the local types of the next block.

Return is an instruction to return from the callee to the caller
function. When the control-flow reaches the end of a function, the
control continues at the caller after the Call instruction that entered
this function. In the local type graph, an edge is added to join the
last node of the function to the continuation at the caller. For the
analysis, this is the dual of the Call instructions, and the return
values are copied back to the caller.

If{Cond} is a conditional jump instruction. Cond is the boolean
jump condition which may be the result of an evaluation in the
preceding instructions, with exactly two outcomes. If Cond is true,
the control-flow continues at the direct successor block (i.e. same
behaviour as Jump), otherwise it continues in the successor+1
block. Like Jump, the If instruction only appears in the end of a
block. The If instruction is translated into the local type graph as
two new edges, which point to the local types for then-block and
the else-block respectively as child subgraphs.

Defer{Func, Method, Args} and RunDefers are a pair of in-
structions that defer a call to a function to the end of the current
function. When a Defer instruction is encountered, the callee Func
is pushed on a stack of deferred function calls. When a RunDe-
fers instruction is encountered, the deferred function calls are then
evaluated like normal Calls. It is guaranteed that RunDefers only
appears once in each control-flow path per function. A new edge is
added to the end of the local type graph of the caller function, and
points to the local type subgraph of the deferred function.

Memory Access Instructions It is sufficient to use the two cat-
egories of instructions above, namely communication and control
flow instructions, to infer local types from simple Go programs.
The memory access instructions do not affect the control flow of
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Table 2. Control-flow related instructions for local type edges; P , Q and F denote local type subgraphs for block P , Q and function F ,
respectively.

SSA instruction Transitions Go code
Call{Func, Method, Args} Function (including closure) call P0

F

func F(x chan T) { ... }
func P() { ch := make(chan T)
// Block P0

F(ch)
}

Go{Func, Method, Args} Start a function as a goroutine P0

P1

new Q

...

func P() {
// Block P0

go Q()
// Block P1

}
Jump Unconditional jump P0

P1

func P() {
// Block P0

// Block P1

}
Return Return from a function to caller F

P1 (caller)

func F() { return }
func P() {
F()
// Block P1

}
If{Cond} Diversion in the control flow Parent Node

P Q

if e {
P // Block 1

} else {
Q // Block 2

}
Defer{Func, Method, Args}
RunDefers

Defer execution to end of function
Run deferred functions P0

P1

Q

func P() {
// Block P0

defer Q()
// Block P1

}

the program, nor do they perform any communication with other
goroutines. Their purpose is to make the channel variables avail-
able to the communication instructions later in the flow of the pro-
gram when analysing the instructions. Hence no nodes or edges are
added to the local type graph, and the memory access information
is safely discarded after the analysis of the program is complete and
local types are generated.

Go code that uses channel variables created by make(chan
T) can be analysed if they are used directly with a Send or

Recv instruction. However, programs often use data structures to
organise data and pass around related groups of data. The example
of a context structure in Listing 6 shows passing of a context
variable ctx which contains a channel ctx.done to a function.
In the actual execution and the generated SSA instructions, the
ctx variable is first allocated with an Alloc instruction on line 4.
Then the channel is created by a MakeChan, and stored in field
of the allocated struct with a Store instruction. The address of
the ctx struct is then passed to the function f on line 5. The
function body of f uses the address of the ctx variable to locate
a reference of the struct variable in main, and use the field access
instruction FieldAddr to retrieve the done field of the struct, and
use the channel for a Send on line 2.

Since the channels are not passed as variables directly, there is
an indirection of memory access (via a structure and then its field).
Our tool stores structure instances created in the source code and
keeps track of where channels are stored in the allocated structures,
then returns the correct channels when they are accessed.

1 type T struct { done chan struct{}; value int }
2 func f(ctx T) { ctx.done <- struct{}{} }
3 func main() {
4 ctx := T{ done: make(chan struct{}, value: 42 }
5 go f(ctx)
6 <-ctx.done
7 }

Listing 6. Context variables in Go.

Here we do not cover all memory access instructions and focus
only on struct, as it is the most common data structure used
for storing channels. The other data structures (arrays, slices) are
similar but with a different set of instructions for allocation, access,
and storage.

Alloc{Heap} is an instruction for allocating memory. We record
the variable of the allocated memory if its type is a structure. The
Heap parameter is a boolean indicating whether the memory is in
heap or in the local activation (stack) frame.

Field{X, Field} and FieldAddr{X, Field} are instructions to ac-
cess a field of a structure. The two instructions are for accessing
the structure X as a value and as a pointer respectively. The field of
a structure is indexed by a numeric field number Field. We lookup
the allocation of structure X, and return the stored value in field
Field. If the field is undefined, we keep a track of its parent struc-
ture and update the structure when a Store instruction is used on
the field.

Store{Addr, Val} stores value (Val) in address (Addr). Changes
to the Val are updated in Addr and will be reflected in the next
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access to the Addr. If Addr is a field accessed by FieldAddr, the
struct that holds the field will also be updated.

4. Global Graph Synthesis
This section explains how to convert a set of local types inferred
from the Go source code into a global graph, which describes an
overall concurrent interaction pattern of a Go program. We call this
procedure global graph synthesis, and use the GMC-Synthesis tool
introduced in a recent work [23].

The GMC-Synthesis tool takes Communicating Finite State
Machines (CFSMs) as input and merges the CFSMs into a global
graph of transitions. The first step of using the tool for global graph
synthesis is therefore converting the local session graph obtained
from Go source code into CFSMs.

4.1 From Inferred Local Types to CFSMs
The CFSMs are finite state machines where the transitions between
states are labelled with either send or receive. The session types
representation we use in the work can be characterised as a simple
model of CFSM [7].

Each local session graph is translated to a single CFSM. The
nodes in the local session graph are events in the CFSM model,
and are represented in the CFSM model as transitions to new states.
A label on transitions is decided by a type of a local type node:
Send ch nodes become transitions with a send label using the
notation ch ! T where T is the type of the channel ch; Recv ch
nodes become transitions with a receive label with the notation
ch ? T ; Close ch nodes become transitions with a send label, but
the message is STOP to indicate the termination of the channel, i.e.
ch ! STOP.

In CFSMs, channels are fixed between two machines. A ma-
chine can use multiple channels, but the endpoints of the channels
are always the same. However the Go channels are shared names
which can be used by multiple goroutines. A Go channel is a shared
location for two or more goroutines to synchronise on send and re-
ceive operations, thus the sender and receiver can be different at
different points of an execution. An example is the done channel
in the main goroutine from Listing 3 which is received twice, and
is expected to receive from each of the two Recv goroutines once.
This is reflected in the inferred local type in Figure 2, where the
channel main.main.t1@0 is used twice in the local type of main
. The translation from local types into CFSM preserves this be-
haviour, where the CFSM communicates with channels which are
variables and not endpoint machines. To illustrate the problem and
our solution, Figure 3 shows the corresponding generated CFSMs.
We also added the two channels t0 and t1 and annotated them with
how messages are transferred from the senders to the receivers via
the Go channels.

main

t1?int

t1?int

Recv_293

t0?int

t1!int

Recv_312

t0?int

t1!int

Send_280

t0!int

channel t0channel t1

Figure 3. Goroutine CFSMs generated from Listing 2. It shows
how channels connect to the CFSMs as proxies; dotted arrows
represent channels used by Goroutine CFSMs.

From Figure 3, we can observe that the CFSMs do not commu-
nicate directly and Go channels resemble switches or multiplexors
between the communicating machines, where the dotted arrows de-
pict the direction of the message flow to and from the channels.
There are no one-to-one connections between the CFSMs that use
the same Go channels, but the link between the CFSMs and a Go
channel is always one-to-one. So instead of treating channels as a
static link between goroutines, we model the Go channels as CF-
SMs as well to represent all possible transitions that a Go channel
are allowed such that they can connect multiple goroutines dynami-
cally. To avoid confusion, we call these machines Channel CFSMs
and distinguish Channel CFSMs from those which model the com-
munication behaviour of goroutines. We call these CFSMs Gorou-
tine CFSMs.

channel t1

main!int

Recv_293?int

main!int

Recv_312?int

main!int

main!int

channel t0

Send_280?int

main!int

main!int

Figure 4. Channel CFSMs generated from Figure 2.

To generate Channel CFSMs from the local types, we first iden-
tify the channels. In Figure 2, the channels are t0 and t1. We then
construct a CFSM for each channel where the first transition from
the initial state is a receive action at this channel and the second
one is a send action which is matched to the initial action, returning
to the initial state. Channel CFSMs of Figure 2 are given in Fig-
ure 4. For t1, there are two receive actions from Recv_293 and
Recv_321, which are matched to two main actions. This corre-
sponds to dotted blue lines in Figure 3, representing a synchronisa-
tion proxy (channel) between machines (participants).

4.2 Global Graph Synthesis
Given both Goroutine CFSMs which represent control flows of the
inferred local types and Channel CFSMs synthetically generated
from the local types, we can then synthesise a global graph from
the CFSMs. The synthesis procedure involves generating all pos-
sible combinations of synchronous labelled transitions of the com-
posed CFSMs. As explained in the previous subsection, CFSMs are
FSMs with transitions labelled send or receive. Send and receive
transitions in the same channel can be matched and synchronised as
a single node in the global graph. Figure 5 shows the global graph
of synthesised from the Goroutine CFSMs in Figure 3 and Channel
CFSMs in Figure 4. In the global graph, rectangle nodes stand for
interactions between two participants (CFSMs), where the number
is the identifier of the machine. Diamond nodes stand for choices,
and a branch is chosen from one of the outgoing edges.

Table 3. A possible execution of Listing 3; Leftmost column is the
id of the CFSM.

# Goroutine (unmatched)
0 Chan t0
1 Chan t1
2 main Recv t1; Recv t1
3 Send_280 Send t0
4 Recv_293 Recv t0; Send t1
5 Recv_312 Recv t0; Send t1

Table 3 shows a possible execution of the program in Listing 3.
The execution can be mapped on to a trace in the global graph from
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3->0:int

4->1:int

1->2:int

5->1:int

1->2:int

+

0->4:int 0->5:int

Figure 5. Global graph of List-
ing 3 with a deadlock.

3->0:int

4->1:int

1->2:int

0->4:int

Figure 6. Global graph of
the corrected example without
deadlock (satifies GMC).

initial state to one of the final states. From the column alignment, it
is clear that one of the Recv goroutine is stuck and has a deadlock.

Generalised Multiparty Compatibility As shown in Figure 5, a
successful construction of a global graph does not guarantee com-
munication safety and deadlock freedom. We use a sound and com-
plete condition for constructing global graph introduced in [23]
called Generalised Multiparty Compatibility (GMC). Communi-
cating systems that satisfy the GMC conditions are communica-
tion safe and deadlock free. GMC is based on two conditions: (i)
representability, where each trace and choices in the CFSMs are
represented in the global graph; and (ii) branching property, which
states that whenever there is a choice in the global graph, a unique
machine takes the decision and the decision is propagated to other
machines. Condition (i) ensures that no information is lost in the
construction of the global type, and condition (ii) ensures that all
branches are well-formed.

In [23], the representability condition is applied on all CFSMs
used to construct the global graph. In our approach we introduced
the generic Channel CFSMs. Channel CFSMs are usually not rep-
resentable because that would imply that all Channel CFSMs have
synchronised with all pairs of Goroutine CFSMs once or more. As
the Channel CFSMs are only generated to limit valid synchroni-
sations and does not give any influence on the communication be-
haviour of Goroutine CFSMs, we only need to check the repre-
sentability condition on Goroutine CFSMs.

Consider Figure 5 and the execution snapshot of Table 3.
The GMC condition is not satisfied because, when the first non-
deterministic choice is made, i.e. the choice between 0 (t0) →
4 Recv t0 at Recv_293 and 0 (t0) → 5 (Recv_312), we can
tell from the global graph that the node in the unselected branch
will not be revisited again. Hence participant 4 (resp. 5) is wait-
ing forever if the branch of 0 → 5 (resp. 0 → 4) is selected. So
the branching condition is violated and as a result, Listing 3 is not
GMC.

Suppose we rectify the problem in Listing 3, by removing the
extra go Recv(ch, done) on line 19 and the extra <-done on
line 23. The global graph synthesised from the corrected example
is shown in Figure 6. The GMC condition in this case is valid,
and therefore the program is safe and deadlock free. Note that

while checking GMC is sufficient to check the deadlock-freedom,
global graphs generated from the CFSMs (such as those shown
in Figure 5) offer useful information for debugging programs, see
[23].

4.3 Mixed Choices
The original theory [23] does not allow a machine to have a mixed
choice which has both sending and receiving from the same state.
The select statement in Go allows to write mixed choices, hence
we are required to relax this condition. The original branching
condition [23] requires the sender to be unique, i.e. the unique
participant should initiate sending actions. Since we are taking a
synchronous model (instead of an asynchronous model in [23]),
we can relax this condition by replacing the unique sender by the
unique machine condition (as explained in the previous paragraph).

P

t0?int t1!int

Q

t0!int

R

t1?int

Figure 7. Mixed Choice with select statement.

Consider the simple mixed choice in Figure 7. In this example,
P initiates both initial sending and receiving actions so that it satis-
fies the unique machine condition. This extension was implemented
in the GMC tool to verify deadlock in Go programs with select
statements.

4.4 Limitations
Our approach uses sets of CFSMs to represent systems of concur-
rent processes, and supports a flexible range of program control-
flow patterns with little restrictions in their structures. Examples
include for-loops, which are translated as two branches of transi-
tions from a state: one for exit loop and another for continue loop
that loops back to the starting state.

This, however, limits our support for dynamic concurrency such
as creating channels in a loop or conditional creation of gorou-
tines for error handling. They correspond to runtime spawning of
new channel CFSMs and new goroutine CFSMs respectively, hence
cannot be represented at static time. To overcome the limitations,
CFSMs are constructed using the inference technique outlined in
Section 3 for each goroutine. If a condition in the control-flow of
the program decides that if a goroutine will be spawned, then a
subset of all generated CFSMs – which translated from goroutines
that are spawned under the same condition – are selected for global
graph synthesis to check that the system is safe under the condi-
tion.

5. Case Studies
We demonstrate our approach by the following case studies,
adapted from common Go concurrency patterns. Table 4 and Sec-
tion 6 summarise their evaluations.

Pipeline: Prime Sieve The pipeline is a straightforward pattern
for chaining together phases of concurrent computation by chan-
nels. Listing 7 is an implementation of the Prime sieve of Eratos-
thenes in Go, which chains together goroutines with channels as
prime filters. The example prints the first 10 prime numbers.

In the code, there are three goroutines (main, filter and
generate) and two channels. The generate goroutine contin-
uously sends numbers to the ch channel.
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1 // Input generator (send and increment)
2 func generate(ch chan<- int) {
3 for i := 2; ; i++ { ch <- i }
4 }
5 // A filter for given prime
6 func filter(in <-chan int, out chan<- int, prime int) {
7 for {
8 i := <-in
9 if i%prime != 0 { out <- i }

10 }
11 }
12 func main() {
13 ch := make(chan int)
14 go generate(ch) // Number generator
15 for i := 0; i < 10; i++ {
16 prime := <-ch
17 fmt.Println(prime)
18 ch1 := make(chan int)
19 go filter(ch, ch1, prime) // Extend pipeline
20 ch = ch1
21 }
22 }

Listing 7. Implementation of concurrent prime sieve.

In main, a prime number is read from the ch channel and is
used for the prime filter. The filter goroutine repeatedly takes an
input channel (ch), and an output channel (ch1) and filters out input
values that are divisible by prime. Finally, in the next iteration the
outputs channel of the filter is used as the new input channel for
the next filter on line 20. The CFSMs for Listing 7 is given in
Figure 8.

main

ch?int

generate

ch!int

filter

ch?int ch1!int

ch?int

Figure 8. Goroutine CFSMs for primesieve.

Fan-in: Multiplexing with select The fan-in pattern uses the
select primitive to multiplex multiple communication by receiv-
ing from a set of input channels, then deliver the results in a single
output channel. A simple implementation of the fan-in pattern is
captured in Listing 8, where the fanin function merges two input
streams into one output stream.

1 func work(ch chan int) { for { ch <- 42 } }
2 func fanin(input1, input2 <-chan int) <-chan string {
3 ch := make(chan string)
4 go func() {
5 for {
6 select {
7 case s := <-input1: ch <- s
8 case s := <-input2: ch <- s
9 }

10 }
11 }()
12 return ch
13 }
14 func main() {
15 input1, input2 := make(chan int), make(chan int)
16 go work(input1)
17 go work(input2)
18 c := fanin(input1, input2)
19 for {
20 fmt.Println(<-c)
21 }
22 }

Listing 8. Implementation of the fan-in pattern.

Figure 9 shows the CFSMs for the fan-in implementation. The
two worker uses input1 and input2 channels respectively to
send their results. The fanin function reads from the two channels
on line 7 and 8 to combine them into a single channel ch in
an anonymous goroutine. The main function then loops over the
combined channel c returned by fanin to print out the received
value on line 20.

work

input1!int

work

input2!int

main

ch?int

filter

input1?intch!int

input2?int

ch!int

Figure 9. Goroutine CFSMs for the fan-in pattern.

The fanin pattern can be implemented alternatively, where the
select statement has a default branch when no more values will
be sent. The output channel ch is explicitly closed to notify the
downstream. The syntax for val := range ch is a shorthand
for reading a value val from a channel ch, test if the channel
is closed, and repeat until the channel is closed. This alternative
implementation highlights the use of close to close a channel and
is shown in Listing 9

1 func fanin(input1, input2 <-chan int) <-chan string {
2 ch := make(chan string)
3 go func() {
4 for {
5 select {
6 case s := <-input1: ch <- s
7 case s := <-input2: ch <- s
8 default: close(ch); return // No more values
9 }

10 }
11 }()
12 return ch
13 }
14 func main() {
15 input1, input2 := make(chan int), make(chan int)
16 go work(input1)
17 go work(input2)
18 for c := range fanin(input1, input2) { // Exit when

channel closed
19 fmt.Println(<-c)
20 }
21 }

Listing 9. Implementation of the alternative fan-in pattern.

Figure 10 shows the CFSMs of Listing 9. The two work gorou-
tines are the same as those in Figure 9. The difference between the
two implementations is the close(ch) which sends a STOP mes-
sage to the channel. The STOP message is propagated to the main
goroutine which decides whether to loop receiving more values or
terminate.

main

ch?int

ch?STOP

filter

input1?int

ch!int input2?int

ch!int

ch!STOP

Figure 10. Goroutine CFSMs for the alternative fan-in pattern.
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Table 4. Experimental evaluation.
LoC. Local Type nodes Channels Goroutines Safe Inference Time (s) Synthesis Time (s)

deadlock (Listing 3) 26 16 2 5 No 0.74 0.36
fanin 36 23 3 4 Yes 0.42 1.47
fanin-alt 37 26 3 4 Yes 0.42 1.97
primesieve 38 20 2 3 No* 0.40 0.27
htcat 721 9632 8 11 Yes 1.38 2.72

6. Experimental Evaluation
We evaluate our static analysis tool with the case studies, and a real
software written in Go that uses concurrency.

deadlock The deadlock example in Listing 3 demonstrates the
strength of our static analysis approach as the runtime deadlock
detector does not consider the program to deadlock. Our synthesis
shows that the main goroutine in the program is not representable,
as it is impossible for both of the Recv goroutines to send the final
done message to main. Figure 3 shows the CFSMs generated from
the source code. Note that machine 5 is missing because the Work
goroutine does not contain any communication. As explained in the
previous section, the deadlock can be removed and the corrected
global graph obtained in Figure 5, and satisfies GMC.

fanin The fanin implementation is safe. In the original imple-
mentation where the inputs are continuous streams of numbers, and
the fanin function combines both streams into a single stream. The
output of the fanin is printed continuously.

fanin-alt The alternative fanin implementation where the
output channel is explicitly closed is also safe, as the termination
of the channel is explicit (as a STOP message in the CFSM model).
The output of the fanin was updated to use the for-range syntax
to take into consideration of the closing of the channel.

primesieve Concurrent prime sieve is unsafe because there is
an infinite number of send generated by generate and filter,
yet the number of receive from main is limited. In practice this
does not affect the program execution because the final filter thread
simply blocks if main is not receiving and filter is sending the
latest prime. The goroutine CFSMs are shown in Figure 8. The
global graph synthesis confirms that the filter CFSM is not
representable in the global graph. This is a false positive result as
the program is safe in practice as long as the main loop is bounded,
but cannot be verified statically unless the loops are unrolled.

htcat htcat2 is a concurrent HTTP file download tool from
Heroku. It issues multiple HTTP GET in parallel to download a
file and coordinate the merging of fragments using channels. In
the main body of the tool, based on the response header from the
HTTP server, the file to download is split into fragments and GET
requests issued in goroutines. When the download of a fragment
is complete, the corresponding goroutines issue a registration mes-
sage with the downloaded content to the main goroutine. The main
goroutine uses a for-select loop to wait for fragments to arrive,
possibly out-of-order. Another for-select case, is to receive a
cancel message from the user, which terminates the download pro-
cess immediately. A final case is to receive a number to determine
the number of fragments left. The other channels in the tool are for
handling errors. In our analysis, we obtained 19 CFSMs (11 gor-
outines, 8 channels) from the Go program, and was reduced from
9632 local session graph nodes extracted. Most of the extracted ses-
sion graph nodes are control-flow nodes such as labels or jumps.
We further isolate the error handling goroutines manually from the

2 https://github.com/htcat/htcat (414 watchers on GitHub)

main program (which does not spawn new gorountines) to verify
deadlock-freedom, due to the limitations explained in Section 4.4.
An example from htcat is shown below, depicting one of the main
functions which creates goroutines for fetching fragments.

...
if err != nil {
go cat.d.cancel(err)
return

}
...
go func() { // start GET worker

The function is short-circuited if an error is detected during the
initialisation and a new goroutine cat.d.cancel is spawned to
terminate the rest of the program. Since the cancel goroutine will
not be created in a normal execution, the CFSM for cancel is
not included in the global graph synthesis but will be considered
separately.

7. Related Work
Deadlock Detection and Checking based on Graphs Process cal-
culi such as CSP are models for a number of previous works on
deadlock detection in parallel systems. Huang [17] proposed a dis-
tributed deadlock detection algorithm based on wait-for graphs for
systems with CSP-like communication. Later Zhao et al. [37] in-
troduced a runtime monitoring approach for deadlock detection for
Occam based on wait-for graphs. Occam is a concurrent program-
ming language built on CSP. Like Go, it uses channels as a medium
for communication between processes. The work in [4] also ap-
plied wait-for/state graphs for deadlock detection in Java and X10,
formalising a phaser-based calculus. These approaches prevent de-
tection of potential deadlocks which do not manifest themselves
at runtime at specific runs. Martin [25] proposed a static analysis
tool3 to detect deadlocks in CSP, but is not applicable to Go di-
rectly sincethere is no precise correspondence between CSP and
Go primitives.

Message Flow Graphs (MFGs) by Ladkin et al. [19, 20, 22, 21]
construct a global FSM from local communications but assume
senders and receivers are statically determined. In this work, the
input model uses a dynamic channel abstraction and requires re-
solving the channels into actual senders and receivers before such
construction can be used. Moreover, our work can handle mixed
choices in the use of select primitive which is more general.

Naik et al. [28] delivered an unsound but effective deadlock de-
tection tool which targets multi-threaded Java by analysing neces-
sary conditions for deadlocks. Other deadlock detection approaches
such as concolic execution [8] are between static analysis and run-
time detection.

To our best knowledge, the present work is the first work to
statically verify deadlocks in the Go language based on the formal
type theory of session types.

Verification of Concurrent Programs based on Session Types
Many programming languages based on session types have been

3 The tool is available at http://wotug.org/parallel/theory/
formal/csp/Deadlock/
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developed in the past decade. See [36] for a recent comprehen-
sive survey. Here we discuss closely related work. Hu et al. [16]
developed Session Java (SJ) with binary session types for socket
programming, which was further extended with multiparty session
types by Sivaramakrishnan et al. [34]. Both works statically verify
the extended Java source code to ensure the lack of communication
errors. Session C [31] uses a static approach, and instead of ex-
tending the language, a custom communication API is provided for
message-passing in C. Similarly a static type checking for MPI pro-
grams based on global dependent session types is studied in [24].

Recent works based on multiparty session types use dynamic,
runtime monitoring for verifications of distributed programs. For
example, runtime monitoring of Python extended to interrupts and
actors are studied in [6] and [29], respectively. The above works
use a protocol description language, Scribble [33], developed with
Red Hat. Another approach taken in [30, 15] is code generation
from Scribble to ensure deadlock-freedom by construction. The
work [30] generates parallelised MPI code combining MPI back-
bones generated from parameterised Scribble and sequential Ker-
nels; and the work [15] generates Java APIs from Scribble [33] and
ensures safety of Java programs with light-weight linearity check of
channel usages. All of the above works use the top-down approach
based on the end-point projection. To our best knowledge, there is
no work which applies the synthesis of multiparty session types to
deadlock detection for real programming languages.

In this work, we analysed the Go programming language na-
tively without extra annotations or runtime libraries, thanks to the
language’s first-class support for concurrent programming.

8. Conclusion and Future Work
We have presented the first static analyser for Go that uses a global
session graph synthesis tool [23] to detect communication dead-
locks. We have applied our tool to Go code and open source
projects with up to 700 lines of code. We demonstrated a com-
bination of session type inference and synthesis that is directly ap-
plicable to verify deadlocks in a practical concurrent programming
language.

Immediate future work includes extending our approach to
support buffered channels which enable asynchronous commu-
nications with bounded queues. In addition to channels, Go pro-
vides the sync.WaitGroup package in its standard library for
barrier-style synchronisation, implemented in atomic instructions
and semaphores. These features can be encoded in CFSMs and
checked with the global graph synthesis approach. Finally, some
of the dynamic concurrency limitations can be overcome by per-
forming multiple global graph synthesis per program on different
subset of CFSMs, and the generation of subsets can be automated.
We leave these extensions to future work.
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Appendix
A. Global graphs from case study examples
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Figure 11. Global graph of fanin from Listing 8.
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Figure 12. Global graph of fanin-alt from Listing 9.
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Figure 13. Global graph of htcat (main control-flow).
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