
Pabble: Parameterised Scribble for Parallel Programming

Nicholas Ng
Imperial College London, UK
Email: nickng@doc.ic.ac.uk

Nobuko Yoshida
Imperial College London, UK

Email: n.yoshida@imperial.ac.uk

Abstract—Many parallel and distributed message-passing
programs are written in a parametric way over available re-
sources, in particular the number of nodes and their topologies,
so that a single parallel program can scale over different
environments. This paper presents a parameterised protocol
description language, Pabble, which can guarantee safety and
progress in a large class of practical, complex parameterised
message-passing programs through static checking. Pabble can
describe an overall interaction topology, using a concise and
expressive notation, designed for a variable number of partic-
ipants arranged in multiple dimensions. These parameterised
protocols in turn automatically generate local protocols for
type checking parameterised MPI programs for communica-
tion safety and deadlock freedom. In spite of undecidability
of endpoint projection and type checking in the underlying
parameterised session type theory, our method guarantees the
termination of endpoint projection and type checking.

I. INTRODUCTION

Message-passing is becoming a dominant programming
model, as witnessed in application programs from high
performance computing scaling over thousands of cores
or cloud-based scalable backends of popular web services.
These are environments where services are dynamically
provided, through choreography of interactions among nu-
merous distributed components. Assuring safety of con-
current software in these environments is a vital concern:
many message-passing libraries, programs and systems are
shared and long-lived, and some process sensitive data,
so that safety violations such as deadlocks and incompat-
ible messaging patterns or data payloads between senders
and receivers can have catastrophic and unexpected conse-
quences [1].

Our proposal for safety assurance for message-passing
programs is based on multiparty session types [2]. The
methodology considers the specification of a global inter-
action protocol among multiple participants, from which
we can derive a local protocol for an individual partici-
pant. Once each program is type-checked against its local
protocol, a set of typed programs is guaranteed to run
without deadlock or communication mismatches. We based
our work on [3], which the authors proposed a programming
framework for message-passing parallel algorithms, centring
on explicit, formal description of global protocols, and
examined its effectiveness through an implementation of a
toolchain for the C language. The toolchain uses a language

Scribble [4], [5] for describing the multiparty session types
in a Java-like syntax. A simple example of a protocol in
Scribble which represents a ring topology between four
workers is given below:
1 global protocol Ring(role Worker1, role Worker2,
2 role Worker3, role Worker4) {
3 rec LOOP {
4 Data(int) from Worker1 to Worker2;
5 Data(int) from Worker2 to Worker3;
6 Data(int) from Worker3 to Worker4;
7 Data(int) from Worker4 to Worker1;
8 continue LOOP; }}

A Scribble protocol starts from the keyword global
protocol, followed by the protocol name, Ring. The role
declarations are then passed as parameters of the protocol,
which are Worker1 through to Worker4. The Ring protocol
describes a series of communications in which Worker1

passes a message of type Data(int) to Worker4 by
forwarding through Worker2 and Worker3 in that order,
and receives a message from Worker4. It is easy to notice
that explicitly describing all interactions among distinct roles
is verbose and inflexible: for example, when extending the
protocol with an additional role Worker5, we must rewrite
the whole protocol. On the other hand, we observe that these
worker roles have identical communication patterns which
can be logically grouped together: Workeri+1 receives a
message from Workeri and the last Worker sends a message
to Worker1. In order to capture these replicable patterns,
we introduce an extension of Scribble with dependent types
called Parameterised Scribble (Pabble). In Pabble, multiple
participants can be grouped in the same role and indexed.
This greatly enhances the expressive power and modularity
of the protocols. Here ‘parameterised’ refers to the number
of participants in a role that can be changed by parameters.

The following shows our ring example in the syntax of
Pabble.
1 global protocol Ring(role Worker[1..N]) {
2 rec LOOP {
3 Data(int) from Worker[i:1..N-1] to Worker[i+1];
4 Data(int) from Worker[N] to Worker[1];
5 continue LOOP; }}

role Worker[1..N] declares workers from 1 to an arbi-
trary integer N. The Worker roles can be identified individ-
ually by their indices, for example, Worker[1] refers to the
first and Worker[N] refers to the last. In the body of the
protocol, the sender, Worker[i:1..N-1], declares multiple

Parameterised
global protocol
G

(1)

Parameterised
local protocol
L1 . . . LN

(2)

Implementation
(eg. MPI)

(3)

Pabble Projection Type checking

Figure 1: Pabble parallel programming workflow.

Workers, bound by the bound variable i, and iterates from
1 to N-1. The receivers, Worker[i+1], are calculated on
their indices for each instances of the bound variable i.
The second line is a message sent back from Worker[N] to
Worker[1].
1 local protocol Ring at Worker[1..N](
2 role Worker[1..N]) {
3 rec LOOP {
4 if Worker[i:2..N] Data(int) from Worker[i-1];
5 if Worker[i:1..N-1] Data(int) to Worker[i+1];
6 if Worker[1] Data(int) from Worker[N];
7 if Worker[N] Data(int) to Worker[1];
8 continue LOOP; }}

The above code shows the local protocol of Ring, projected
with respect to the parameterised Worker role. The projec-
tion for a parameterised role, such as Worker[1..N], will
give a parameterised local protocol. It represents multiple
endpoints in the same logical grouping.

Challenges: The main technical challenge for the de-
sign and implementation of parameterised session types is to
develop a method to automatically project a parameterised
global protocol to a parameterised local protocol ensuring
termination and correctness of the algorithm.

Unfortunately, as in the indexed dependent type theory
in the λ-calculus [6], [7], the underlying parameterised
session type theory [8] has shown that the projection and
type checking with general indices are undecidable. Hence
there is a tension between termination and expressiveness
to enable concise specifications for complex parameterised
protocols.

Our main approach to overcome these challenges is to
make the theory more practical by extending Scribble
with index notation originating from a widely used text
book for modelling concurrent Java [9]. For example, no-
tations Worker[i:1..N-1] and Worker[j+i] in the Ring
protocol are from [9]. Interestingly, this compact notation
is not only expressive enough to represent representative
topologies ranging from parallel algorithms to distributed
web services, but also offers a solution to cope with the
undecidability of parameterised multiparty session types.

Overview: Figure 1 shows the relationships between
the three layers: global protocols, local protocols and imple-
mentation. (1) A programmer first designs a global protocol
using Pabble. (2) Then our Pabble tool automatically
project the global protocol into its local protocols. (3) The
programmer then either implement the parallel application
using the local protocol as specification, or type-check

existing parallel applications against the local protocol. If the
communication interaction patterns in the implementations
follow the local protocols generated from the global pro-
tocol, this method automatically ensures deadlock-free and
type-safe communication in the implementation. In this work
we focus on the design and implementation of the language
for describing parallel message-passing based interaction as
global and local protocols in (1) and (2), and outline how a
session type checker for MPI (3) can be implemented with
Pabble. The contributions of this paper are:
• The first design and implementation of parameterised

session types in a global protocol language (Pabble)
(§ II-A). The protocols can represent complex topolo-
gies with arbitrary number of participants, enhancing
expressiveness and modularity for practical message-
passing parallel programs.

• The projection algorithm (§ II-D) for Pabble to check
the well-formedness of parameterised global protocols
(§ II-B) and to generate parameterised local proto-
cols from well-formed parameterised global protocols
(§ II-C). A correctness and termination proof of the
projection algorithm is also presented (§ II-E).

• A complete use case of Pabble describing a parallel
linear equation solver (§ III-B), and a methodology for
type checking (§ III-C) written in MPI using Pabble.

Additional use cases of Pabble in different settings
include covering common parallel topologies described in
Dwarf [10], Web Service Choreography Language Specifi-
cation [11] and the Ocean Observatories Initiative [12]. All
program examples, additional use cases and implementations
are available from [13].

II. Pabble: PARAMETERISED SCRIBBLE

Scribble [5] is a developer friendly notation for spec-
ifying application-level protocols based on the theory of
multiparty session types [2], [14]. This section introduces an
evolution of Scribble with parameterised multiparty session
types (Pabble), defines its endpoint projection and proves
its correctness.

A. Syntax of Pabble
Global protocols: Figure 2 lists the core syntax of

Pabble, which consists of two protocol declarations, global
and local. A global protocol is declared with the protocol
name (str denotes a string) with role and group parameters
followed by the body G. Role R is a name with argument
expressions. The argument expressions are ranges h, and
the number of arguments corresponds to the dimension
of the array of roles: for example, Worker[1..4][1..2]
denotes a 2-D array with size 4 and 2 in the two dimensions
respectively, forming a 4-by-2 array of roles.

Declared roles can be grouped by specifying a named
group using the keyword group, followed by the group
name and the set of roles. For example,

Global Pabble
global protocol str (para) { G }

Parameter
para ::= role Rd, . . . , group str={Rd, . . .}, . . .

Global protocol body
G ::= l(T) from R to R;

| choice at R { G } or { G }
| foreach (b) { G } | allreduce opc(T);
| rec l { G } | continue l; | G G

Payload type
T ::= int | float | . . .

Expression
e ::= e op e | num | i, j, k, ... | N

op ::= opc | - | / | % | << | >> | log | . . .
opc ::= + | * | . . .

Role
Rd ::= str | str[e..e]...[e..e]
R ::= str | str[h]...[h] | All
h ::= b | e b ::= i : e..e

Local Pabble
local protocol str at Rd(para) { L }

Local protocol body
L ::= [if R] l(T) from R; | [if R] l(T) to R;

| choice at R { L } or { L }
| foreach (b) { L } | allreduce opc(T);
| rec l { L } | continue l; | L L

Figure 2: Pabble Syntax.

group EvenWorker={ Worker[2][2], Worker[4][2] }

creates a group which consists of two Workers. A special
built-in group, All, is defined as all processes in a session.
We can encode collective operators such as many-to-many
and many-to-one communication with All, which will be
explained later.

Apart from specifying ranges explicitly, ranges can also
be specified using expressions. Expression e consists of the
usual operators for numbers, logarithm, left and right logical
shifts (<<, >>), numbers, variables (i, j, k), and constants (M,
N). Constants are either bound outside the protocol decla-
ration or are left free (unbound) to represent an arbitrary
number. As in [9], when the constants are bound, they
are declared by numbers outside the protocol, e.g. const
N = 100 or lower and upper bounds, e.g. const N

= 1..1000. We also allow leaving the declaration free
(unbound), e.g. const N, as a shorthand to represent an
arbitrary constant with lower and upper bounds 0 and inf

respectively, i.e. const N = 0..inf, where inf is a
special value representing infinity. Binding range expression
r takes the form of i : e1..en which means i is ranged from
e1 to en. Binding variables always bind to a range expression
and not any individual values. We shall explain the use of
binding range expressions later in more details.

In a global protocol G, l(T) from R1 to R2 is called an

interaction statement, which represents passing a message
with label l and type T from one role R1 to another
role R2. R1 is a sender role and R2 is a receiver role.
choice at R {G1} or . . .or {Gn} means the role R
will select one of the global types G1,. . . ,Gn. rec l {G}
is recursion with the label l which declares a label for
continue l statement. foreach(b){G} denotes a for-loop
whose iteration is specified by b. For example, foreach(
i : 1..n){G} represents the iteration from 1 to n of G where
G is parameterised by i.

Finally, allreduce opc(T) means all processes perform a
distributed reduction of value with type T with the operator
opc (like MPI_Allreduce in MPI). It takes a mandatory
predefined operator opc where opc must be a commutative
and associative arithmetic operation. Pabble currently sup-
ports sum and product.

We allow using simple expressions (e.g. Worker[i

:0..2*N-1]) to parameterise ranges. In addition, indices
can also be calculated by expressions on bound variables
(e.g. Worker[i+1]) to refer to relative positions of roles.

These restrictions on indices such as bound variables and
relative indices calculations ensure termination of the pro-
jection algorithm and type checking. The binding conditions
are discussed in the next subsection.

Local protocols: Local protocol L consists of the same
syntax of the global type except the input from R (receive)
and the output to R (send). The main declaration local
protocol str at Re(. . .){L} means the protocol is located
at role Re. We call Re the endpoint role. In Pabble, multiple
local protocol instances can reside in the same parameterised
local protocol. To express conditional statements in local
protocols, if R may be prepended to input or output
statement. if R input/output statement will be ignored if
the local role does not match R. More complicated matches
can be performed with a parameterised role, where the
role parameter range of the condition is matched against
the parameter of the local role. For example, if Worker

[1..3] will match Worker[2] but not Worker[4]. It is
also possible to bind a variable to the range in the condition,
e.g. if Worker[i:1..3], and i can be used in the same
statement.

B. Well-formedness conditions: index binding

As Pabble protocols include expressions in parameters, a
valid Pabble protocol is subject to a few well-formedness
conditions. Below we show the conditions which ensure
indices used in roles are correctly bounded. We use fv/bv to
denote the set of free/bound variables defined as fv(i) = {i},
fv(N) = fv(num) = ∅ and fv(i : e1...en) = ∪fv(ej)
and fv(foreach(b){G}) = (fv(b) ∪ fv(G)) \ bv(b) and
bv(i : e1...en) = {i}. Others are inductively defined.

1) In a global protocol role declaration, global
protocol, indices outside of declared range are in-

valid, for example, a role Worker[0] is invalid if the
role is declared role Worker[1..3].

2) Let foreach(b1){ foreach(b2){ foreach(bn){
G}}} with n ≥ 0:

a) Suppose an interaction statement l(T) from R1

to R2 appears in G. Let R1 = Role1[h1]..[hn]
and R2 = Role2[e

′
1]..[e

′
m] (we assume n = 0

(resp. m = 0) if R1 (resp. R2) is either a single
participant or group).

(1) n = m (i.e. the dimensions of the parameters
are the same)

(2) fv(hj) ⊆ ∪bv(bi) (i.e. the free variables in
the sender roles are bound by the for-loops).

(3) fv(e′j) ⊆ (∪bv(bi)) ∪ bv(hj) (i.e. the free
variables in the receiver roles are bound by
either the for-loops or sender roles);

b) Suppose a choice statement choice at R {

G1 } or { G2 } appears in G. Then R is a
single participant, i.e. either Role or Role[e] with
fv(e) ⊆ (∪bv(bi)).

Condition 2(a)(1) ensures the number of sender parameters
matches the number of receiver parameters. For example
l(T) from Worker[i:1..N-1][j:1..N] to Worker[i

+1] is invalid. Condition 2(a)(2) ensures variables used by
the sender are declared by the for-loops. Condition 2(a)(3)
makes sure the receiver parameter at the j-th position is
bound by the for-loops or the sender parameter at the j-th
position (and not binders at other positions). For example,
l(T) from Worker[i:1..N-1][j:1..N] to Worker[i

+1][j] is valid, while l(T) from Worker[i:1..N-1][

j:1..N] to Worker[j][i+1] is not. Condition 2(b) is
similar for the case of choice statements where R should
be a single participant to satisfy the unique sender condition
in [15], [16].

C. Well-formedness conditions: constants

In Pabble protocols, constants can be defined by (1) a
single numeric value (const N=4); or (2) lower and upper
bound constraints not involving infinity (const N=1..1000

). Lower and upper bound constraints are designed for
runtime constants, e.g. the number of processes spawned
in a scalable protocol, which is unknown at design time
and will be defined and immutable once the execution
begins. To ensure Pabble protocols are communication-
safe in all possible values of constants, we must ensure
that all parametrised role indices stay within their declared
range. Such conditions prevent sending or receiving from an
invalid (non-existent) role which will lead to communication
mismatch at runtime.

In case (1), the check is trivial. In case (2), we require
a general algorithm to check the validity between multiple
constraints appeared in the regions. First, we formulate the
constraints of the values of the constants as a series of

linear inequalities. We then combine the linear inequalities
and determine the feasible region using standard linear
programming. The feasible region represents the pool of
possible values in any combination of the constraints. The
following explains how to determine whether the protocol
will be valid for all combinations of constants:
1 const M = 1..3; const N = 2..5;
2 global protocol P(role R[1.. N]) {
3 T from R[i:1.. M] to R[i+1];
4 }

The basic constraints from the constants are 1 ≤ M, M ≤ 3,
2 ≤ N and N ≤ 5. We then calculate the range of R[i+1]
as R[2..M+1]. Since the objective is to ensure that the

role parameters in the protocol body (i.e. 1..M and 2..M

+1) stay within the bounds of 1..N, we define an objective
function to be 1 ≤ 1 & M ≤ N and 1 ≤ 2 & M +1 ≤ N,
which are lower and upper bound inequalities of the two
ranges. From them, we obtain M +1 ≤ N as a result. By
comparing this against the basic constraints on the constants,
we can check not all outcomes belong to the regions and
thus this is not a communication-safe protocol (an example
of a unsafe case is M = 3 and N = 2). On the other hand,
if we alter Line 4 to T from R[i:1..N-1] to R[i+1],
the objective function is unconditionally true and so we can
guarantee all combinations of constants M and N will not
cause communication errors.

Arbitrary constants: In addition to constant values and
lower and upper bound constants, we also consider the use
cases when the value of a constant can be any arbitrary value
in the set of natural numbers. This is a general case of (2)
and is equivalent to const N = 0..inf where inf is a
keyword to represent positive infinity.

In order to check that role indices are valid with infinite
ranges, we enforce two simple restrictions. First, only one
constant can be defined with inf in one global protocol.
Secondly, when the index is infinite, its range calculation
only uses addition or subtraction on integers (e.g. i+1).

A protocol with an invalid use of arbitrary constants is
shown below:
1 const N = 1..inf;
2 global protocol Invalid(role R[1..N]) {
3 T from R[i:1..N-1] to R[i+1];
4 T from R[j:1..N] to R[j+1]; }

if N is 1, then the role is declared to be R[1..1]. In the first
interaction statement, R[i:1..1-1] is invalid, as R[0] is
not in the range of R[1..0]. In the second statement R[j
+1] is also invalid, as it evaluates to R[N+1] and is out of
range R[1..N].

On the other hand, the following protocol is valid since
the indices always stay between 0 and N.
1 const N = 1..inf;
2 global protocol Valid(role R[0..N]) {
3 T from R[i:0..N-1] to R[i+1];
4 T from R[j:1..N] to R[j-1]; }

We have shown in [13], most of representative topologies
with the arbitrary number of participants can be represented
under these conditions.

Range (b) Expr. (e) apply(b,e) inv(e)
i:1..N i+1 i:2..N+1 i-1
i:1..3 i*2 i:2,4,6 i/2
i:1..3 i i:1..3 i
i:0..3 1<<i i:1,2,4,8 log(i, 2)
i:1..3 i%2 i:1,0,1 Invalid

Table II: Examples of apply() and inv().

D. Endpoint projection

In the next step, a Pabble protocol should be projected
to a local protocol, which is simplified Pabble protocol
as viewed from the perspective of a given endpoint. The
projection algorithm is explained below. To begin with, the
header of the global protocol

global protocol name(param) { G }

is projected onto

local protocol name at Re(param) { L }

where the protocol name name and parameters param are
preserved and the endpoint role Re is declared.

Table I shows the projection of the body of global protocol
G onto R at endpoint role Re.

Each rule is applied if R meets the condition in the
second column under the constraints given by the constant
declarations. Rules 1 and 2 show the projection of the
interaction statement when R appears in the receiver and the
sender position respectively. Since R is a single participant,
it should satisfy R = Re (i.e. the role is the endpoint role).
The projection simply removes the reference to role R from
the original interaction statement.

Rules 3 and 4 show the projection of an interaction
statement if role R is a parameterised single participant
where R is an element of the endpoint role Re. For example,
if Re = Worker[1..3], R can be either Worker[1],
Worker[2] or Worker[3]. In addition to removing the
reference of role R in the receive and send statements, we
also prepend the conditions which the role applies.

Rule 5 is for All-to-All communication. Any role R will
send a message with type U to all other participants and will
receive some value with type U from all other participants.
Since all participants start by first sending a message to all,
no participant will block waiting to receive in the first phase,
so no deadlock occurs.

Rules 6 and 7 are the projection rules for the case that
we project onto a group. We need to check that a group is
a subset of the endpoint role Re with respect to the group
declarations in the global protocol. Then the rules can be
understood as Rules 3 and 4.

Rules 8 and 9 show the projection of interaction state-
ments with parameterised roles using relative indexing (we
show only one argument: the algorithm be extended easily
to multiple arguments using the same methods). Rule 8 uses
two auxiliary transformations of expressions, apply and

inv. Table II lists their examples. apply takes two argu-
ments, a range with binding variable (b) and an expression
using the binding variable (e). The expression is applied to
both ends of the range to transform the relative expression
into a well defined range. inv calculates the inverse of a
given expression, for example, the inverse of i+1 is i-1 and
the inverse of i*2+1 is (i-1)/2. In cases when an inverse
expression cannot be derived, such as i%2, the expression
will be calculated by expanding to all values in the range
and instantiating every value bound by its binding variable
(e.g. i). A concrete example is the projection of U from W

[i:1..3] to W[(i+1)%2], which will be expanded to U

from W[1] to W[0]; U from W[2] to W[1]; U from
W[3] to W[0]; before applying the projection rules. In

order to perform the range expansion above, the beginning
and the end of the range must be known at projection time.
For this reason, the projection algorithm returns failure if
a statement uses parameterised roles with such expressions
and the range of the expressions is defined with arbitrary
constants (see § II-C). Otherwise, the expressions might
expand infinitely and not terminate. This is the only situ-
ation which projection may fail, given a well-formed global
protocol. The condition R[b] ⊆ Re of Rule 9 means the
range of b is within the range of the endpoint role Re. For
example, W[i:1..2] ⊆ W[1..3].

If a projection role matches the choice role (R in choice
at R) (Rule 10), then it means a selection statement,

whose action is selecting a branching by sending a label.
The child or-blocks (L1 . . .LN) are recursively projected;
whereas if a projection role does not match the choice role
(Rule 11), then the choice statement represents a branch
statement, which is the dual of the selection. For recursion
(Rule 12), continue (Rule 13) and foreach (Rule 14) state-
ments are just kept in the projected endpoint protocol.

Collective operations: In addition to point-to-point
message-passing, collective operations can also be concisely
represented by Pabble. Endpoint message-passing state-
ments are interpreted differently depending on the declara-
tions (i.e. parameters) in the global type. Table III lists the
possibilities of a projection and their respective meanings on
the first column with respect the declarations in the global
types on the second column. The combination of projected
local statements and the type (i.e. single participant or group
role) of the local role being projected are unique and can
identify the communication pattern in the global protocol.
We consider three possible kinds of roles: single participant
(e.g. A or A[1]), group role (e.g. A[1..N] or as declared
by (group G) and relative role (e.g. A[i+1]).

E. Correctness and termination of the projection

The parameterised session theory which Pabble is based
on [8] has shown that, in the general case, projection
and type checking are undecidable. Our first challenge for
Pabble’s design is to ensure the termination of well-formed

R Conditions Global protocol Local protocol projected onto R at Re

1. Non-parametric participant R = Re U from R′ to R U from R′

2. Non-parametric participant R = Re U from R to R′ U to R′

3. Parametric participant R ∈ Re U from R′ to R if R U from R′

4. Parametric participant R ∈ Re U from R to R′ if R U to R′

5. All to All U from All to All U to All; U from All
6. Group R ⊆ Re U from R′ to R if R U from R′

7. Group R ⊆ Re U from R to R′ if R U to R′

8. Relative role R[e] ⊆ Re U from R′[b] to R[e] if R[apply(b,e)] U from R′[inv(e)]
9. Relative role R[b] ⊆ Re U from R[b] to R′[e] if R[b] U to R′[e]
10. Choice at single participant R = Re or R ∈ Re choice at R { G1 } or . . .{ GN } choice at R { L1 } or . . .{ LN }
11. Choice choice at R′ { G1 } or . . .{ GN } choice at R′ { L1 } or . . .{ LN }
12. Recursion rec l { G } rec l { L }
13. Continue continue l continue l
14. Foreach foreach (b) { G } foreach (b) { L }
15. All reduce allreduce opc(T) allreduce opc(T)

Table I: Projection of G onto R at the end-point role Re.
L and Li correspond to the projection of G and Gi onto R.

Declaration Pabble statement Projection of A Projection of B
Point-to-point role A, role B U from A to B U to B U from A

(Param. A/B) role A[1..N], B[1..M] U from A[i] to B[j] if A[i] U to B[j] if B[j] U from A[i]
(Parallel P2P) role A[1..N], B[1..M] U from A[i:1..N] to B[i+1] if A[i:1..N] U to B[i+1] if B[i:2..N+1] U from A[i-1]

Gather group A, role B U from A to B if A U to B U from A
(Param. B) group A, role B[1..N] U from A to B[i] if A U to B[i] if B[i] U from A

Scatter role A, group B U from A to B U to B if B U from A
(Param. A) role A[1..N], group B U from A[i] to B if A[i] U to B if B U from A[i]

Group-to-group group A, B U from A to B if A U to B if B U from A
All-to-all U from All to All U to All; U from All U to All; U from All

Table III: Meanings and projections of different forms of interaction statements.

checking and projection, without sacrificing the expressive-
ness. The proofs of the following theorems can be found in
[13].

Theorem 1 (termination): Given global protocol G, the
well-formed checking terminates; and given a well-formed
global type G and an endpoint role Re, projection G on Re

always terminates.
Note that the above theorem implies the termination of

type checking (see Theorem 4.4 in [8]).
One of benefits of using Pabble is that it provides

the expressiveness required to be able represent collective
protocols of MPI. The correctness of projections of these
protocols is ensured by the projection rule of the groups
in [17]. The special case of U from All to All follows
the asynchronous subtyping rules in [18]. The correctness
property which relates to ranges of Pabble follows:

Theorem 2 (range): The indices of roles appearing in a
local protocol body do not exceed the lower and upper
bounds stated in the global protocol ProtocolName(para)
in global protocol ProtocolName(para){G} or the
constant declarations (const N = n..m).

III. EXAMPLES AND TYPE CHECKING

In § II-D, a local Pabble protocol is obtained by project-
ing from a Pabble protocol. The local protocol can then be
used as a blueprint to implement parallel programs. In this
section we run through an example of local protocol pro-
jection, followed by an implementation of a parallel linear
equation solver following a wraparound mesh protocol.

A. Projection example: Ring protocol

We now run through the projection of the Ring protocol
in § I as an example. Local protocols are generated from the
global protocols. From the perspective of a projection tool,
to write a protocol for an endpoint, we start with local
protocol followed by the name of the protocol and the

endpoint role it is projected for. Since the only role of the
Ring protocol is Worker which is a parameterised role, we
use the full definition of the parameterised role, Worker

[1..N]. Then we list the roles used in the protocol inside
a pair of parentheses, similar to function arguments in a
function definition in C. Note that if the projection role is in
the list, we exclude it because the local protocol itself is in
the perspective of that role; however, since parameterised
roles can be used on multiple endpoint roles, we allow
parameterised roles to appear in the list of roles in the
protocol. The first line of the projected protocol is thus given
as follows:
1 local protocol Ring at Worker[1..N](role Worker[1..N])

We then copy the recursion statement to the local protocol,
which will be present in all projected protocols.
2 rec LOOP {

Next, we take the first interaction statement from Ring

protocol and project it with respect to Worker, applying
the rules listed in Table I. As the first statement involves a
parameterised destination role, we apply Rule 7 to extract the
receive portion of the interaction statement. The apply()

function is applied to i:1..N-1 and the relative expression
i+1 to obtain 2..N for the role condition. The inv() of

relative expression i+1 is i-1, which will form the index
of the sender role.
3 if Worker[i:2..N] Data(int) from Worker[i-1] ;

Since Worker also matches the source parameterised role,
Rule 8 is applied to get the send portion of the interaction
statement.
4 if Worker[i:1..N-1] Data(int) to Worker[i+1];

Then we move on to the second statement of the global pro-
tocol, which is Data(int)from Worker[N] to Worker

[1];. Similar to the previous statement, we apply Rule 3 and
Rule 4 to obtain the respective receive and send statements
in the local protocol.
5 if Worker[1] Data(int) from Worker[N];
6 if Worker[N] Data(int) to Worker[1];

Finally we apply Rule 13 to trivially copy the continue
statement to the local protocol.
7 continue LOOP; }

The resulting local protocol is shown in § I.

B. Implementation example: Linear equation solver

Listing 2 shows an example implementation outline for
a linear equation solver using a wraparound mesh, which
follows the Pabble protocol in Listing 1. The topology is
illustrated in Figure 3. The example is given in Message-
Passing Interface (MPI), the most commonly used library
for message-passing applications in parallel computing.
1 global protocol Solver(role W[1..N][1..N], group Col={

W[1..N][1]}) {
2 rec CONVERGE {
3 Ring(double) from W[i:1..N][j:1..N-1] to W[i][j+1];
4 Ring(double) from W[i:1..N][N] to W[i][1];
5
6 // Vertical propagation
7 (double) from Col to Col;
8 continue CONVERGE; }}

Listing 1: Linear equation solver protocol.

W[1][1] W[1][2] W[1][N]

W[2][1] W[2][2] W[2][N]

W[N][1] W[N][2] W[N][N]

Figure 3: N2-node wraparound mesh topology.

The protocol above describes a wraparound mesh that
performs a ring propagation between W (for worker) in the
same row (Line 3–4), and the result of each W row is
distributed to all Ws in the first column (i.e. W[*][1]). The
local Pabble protocol of Solver is available in [13].
1 MPI_Init(&argc, &argv); // Start of protocol
2 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Process ID
3 MPI_Comm Col; int N = (int)sqrt(size);
4 ...
5 /* Calculate condition for W[i:1..N][j:2..N] */
6 if (2 <= rank%N+1 && rank%N+1 <= N)

7 MPI_Recv(buf, cnt, MPI_DOUBLE, /*W[i][j-1]*/ rank-1,
Ring, MPI_COMM_WORLD);

8 /* Calculate condition for W[i:1..N][j:1..N-1] */
9 if (1 <= rank%N+1 && rank%N+1 <= N-1)

10 MPI_Send(buf, cnt, MPI_DOUBLE, /*W[i][j+1]*/ rank+1,
Ring, MPI_COMM_WORLD);

11 /* Calculate condition for W[i:2..N][j:1..N] */
12 if (2 <= rank/N+1 && rank/N+1 <= N)
13 MPI_Send(buf, cnt, MPI_DOUBLE, /*W[i-1][j]*/ rank-N

*1, Ring, MPI_COMM_WORLD);
14 /* Calculate condition for W[i:1..N-1][j:1..N] */
15 if (1 <= rank/N+1 && rank/N+1 <= N-1)
16 MPI_Send(buf, cnt, MPI_DOUBLE, /*W[i+1][j]*/ rank+N

*1, Ring, MPI_COMM_WORLD);
17
18 /* Distribute results vertically */
19 if (rank%N+1 == 1)
20 MPI_Allgather(buf_col, cnt_col, MPI_DOUBLE, buf_col,

cnt_col, MPI_DOUBLE, Col);
21 ...
22 MPI_Finalize(); // End of protocol

Listing 2: MPI implementation for Solver protocol

C. Type checking

Given the local protocol and the implementation, we
propose a session type checker to verify the conformance
of the implementation against the projected local protocol.
Conformance of endpoint programs against the projected
protocol will yield communication-safe parallel programs.

Pabble local protocols have similar structure to that of
MPI programs. Both Pabble protocols and MPI programs
are designed such that a single source code representing
multiple endpoints, a result of the Single Program Multi-
ple Data (SPMD) parallel programming model. The core
communication primitives of MPI can correspond to Pabble
statements, as demonstrated in Listing 2. In addition, collec-
tive operations such as broadcast (MPI_Bcast) or all-reduce
(MPI_Allreduce) are supported. The details are listed in
[13].

Challenges for a complete MPI type checker: In [3],
Ng et al. introduced a session type checker for a non-
parameterised protocol language and a simple session pro-
gramming API. We face a number of challenges when build-
ing a complete type checker using the same methodology for
Pabble, which is a dependent protocol language and MPI,
which is a standard parameterised implementation API. The
Pabble language with its well-formedness checks reduces
some of the undecidability issues in the protocol represen-
tation. The type checking process will compare the protocol
against a simplified, canonical local protocol extracted from
the implementation, which still posts a challenge in the
process of protocol extraction. In particular, inferring source
and destination processes from parametric source code is
non-trivial. MPI uses process IDs (or ranks) to identify
processes, and it is valid to perform numeric operations on
the ranks to efficiently calculate target processes. This allows
ways of exploiting the C language features while remaining
a valid program. For example, instead of more conventional
conditional statements, MPI_Send(buf, cnt, MPI_INT,
rank%2 ? rank+1: rank-1, ...) may be used and

the process ID, rank, is being used as a boolean, thus
a straightforward analysis of rank usages would not be
sufficient. In order to correctly calculate target processes
of the interactions, it will be necessary to simulate rank
calculations by techniques such as symbolic execution.

IV. RELATED AND FUTURE WORK

Formal verification and languages for parallel appli-
cations: Pilot [19] is a parallel programming library built
on standard MPI to provide a simplified parallel program-
ming abstraction based upon CSP. The communication is
synchronous and channels are untyped to facilitate reuse for
different types. The implementation includes an analyser to
detect communication deadlock at runtime. Our proposed
typechecker is static and is able to detect and prevent
deadlocks before execution.

Interprocedural control flow graph (ICFG) [20] and par-
allel control flow graph (pCFG) [21] are techniques to
analyse MPI parallel programs for potential message leak
errors. They take a bottom-up engineering based approach,
in contrast to our formally based, top-down global protocol
approach, which can give a high-level understanding of
the overall communication by design, in addition to the
communication safety assurance by multiparty session types.

Parameterised multiparty session types: Previous work
from Ng et al. [3] introduces a C programming framework
based on multiparty session types (MPSTs), but it does not
treat parameterisation. Hence the user needs to explicitly
describe all interactions in the protocol, and the type checker
does not work if the number of participants is unknown
at compile time. Pabble’s theoretical basis is developed in
[8] where parameterised MPSTs are formalised using the
dependent type theory of Gödel’s System T . The main aim
in [8] is to investigate the decidability and expressiveness
of parameterisations of participants. Type checking in [8] is
undecidable when the indices are not limited to decidable
arithmetic subsets or the number of the loop in the param-
eterised types is infinite. The design of Pabble is inspired
by the LTSA tool from a concurrency modelling text book
used for the undergraduate teaching in the authors’ university
over two decades [9]. The notations for parameterisations
from the LTSA tool offers not only practical restrictions to
cope with the undecidability of parameterised MPSTs [8],
but also concise representations for parameterised parallel
languages. Our work is the first to apply parameterised
MPSTs in a practical environment and one foremost aim
of our framework with Pabble and parameterised notation
is to be developer friendly [5] without compromising the
strong formal basis of session types.

Future work: Future works include extending Pab-
ble and the underlying theory with support for modelling
process creation and destroy, such as dynamic multirole
approach described in [17].

Acknowledgements.: The research leading to these re-
sults has received funding from EPSRC EP/F003757/01,
EP/G015635/01 and the European Union Seventh Frame-
work Programme under grant agreement number 257906,
287804 and 318521. The support by UK EPSRC, the
HiPEAC NoE, the Maxeler University Program, and Xilinx
is gratefully acknowledged.

REFERENCES

[1] G. Gopalakrishnan et al., “Formal analysis of MPI-based
parallel programs,” Commun. ACM, vol. 54, no. 12, pp. 82–
91, 2011.

[2] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asyn-
chronous session types,” in POPL’08, 2008, pp. 273–284.

[3] N. Ng, N. Yoshida, and K. Honda, “Multiparty Session C:
Safe Parallel Programming with Message Optimisation,” in
TOOLS, ser. LNCS, vol. 7304. Springer, 2012, pp. 202–
218.

[4] K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and
N. Yoshida, “Scribbling interactions with a formal founda-
tion,” in ICDCIT, ser. LNCS, vol. 6536. Springer, 2011, pp.
55–75.

[5] “Scribble homepage,” http://www.jboss.org/scribble.
[6] D. Aspinall and M. Hofmann, Advanced Topics in Types and

Programming Languages. MIT, 2005, ch. Dependent Types.
[7] H. Xi and F. Pfenning, “Eliminating array bound checking

through dependent types,” in PLDI ’98, 1998, pp. 249–257.
[8] P.-M. Deniélou, N. Yoshida, A. Bejleri, and R. Hu, “Parame-

terised multiparty session types,” LMCS, vol. 8, no. 4, 2012.
[9] J. Magee and J. Kramer, Concurrency: state models and Java

programs (2. ed.). Wiley, 2006.
[10] K. Asanovic et al., “A view of the parallel computing land-

scape,” Commun. ACM, vol. 52, no. 10, pp. 56–67, Oct. 2009.
[11] “W3C Web Services Choreography,” http://www.w3.org/

2002/ws/chor/.
[12] “Ocean observatories initiative,” http://www.

oceanobservatories.org/.
[13] “Full version.” [Online]. Available: http://www.doc.ic.ac.uk/

∼cn06/pabble
[14] Bettini et al., “Global Progress in Dynamically Interleaved

Multiparty Sessions,” in CONCUR 2008, ser. LNCS, vol.
5201. Springer, 2008, pp. 418–433.

[15] P.-M. Deniélou and N. Yoshida, “Multiparty session types
meet communicating automata,” in ESOP, ser. LNCS, vol.
7211. Springer, 2012, pp. 194–213.

[16] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani, “On
global types and multi-party session,” LMCS, vol. 8, no. 1,
2012.

[17] P.-M. Deniélou and N. Yoshida, “Dynamic multirole session
types,” in POPL. ACM, 2011, pp. 435–446.

[18] D. Mostrous, N. Yoshida, and K. Honda, “Global principal
typing in partially commutative asynchronous sessions,” in
ESOP, ser. LNCS, vol. 5502, 2009, pp. 316–332.

[19] J. Carter, W. B. Gardner, and G. Grewal, “The Pilot approach
to cluster programming in C,” in IPDPSW. IEEE, 2010, pp.
1–8.

[20] M. Strout, B. Kreaseck, and P. Hovland, “Data-Flow Analysis
for MPI Programs,” in ICPP’06. IEEE, 2006, pp. 175–184.

[21] G. Bronevetsky, “Communication-Sensitive Static Dataflow
for Parallel Message Passing Applications,” in CGO ’09.
IEEE, 2009, pp. 1–12.

